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We consider the solution of  the nonlinear heat-conduction problem for an orthotropic thermosensitive plate 

heated by a uniformly moving heat source. 

Glass-reinforced plastics are widely used in machines and apparatuses. Owing to good heat resistance 

structural elements of glass-reinforced plastics heat up rather slowly, which is very important under the conditions 

of high-gradient heat fluxes. The inner layers of parts made of glass-reinforced plastics are not warmed up and 

remain strong enough over the time needed for the operation of the structure even at surface temperatures of several 

thousands degrees Celsius. 

For the most part, heat-conduction problems for heatproof structures made of anisotropic materials are 

considered by researchers under the assumption that the thermophysical characteristics of these materials are 

temperature-independent. This is explained by both the complexity of obtaining an exact analytical solution for a 

nonlinear heat conduction problem and the difficulties in determining experimentally the dependences of the 
thermal parameters of the material (thermal conductivity, volumetric heat capacity, etc.) on temperature and, 

consequently, their uncertainty. 

In the present work we give a solution of the heat conduction problem for an orthotropic plate starting from 

the premise that the thermophysical characteristics of the material depend on temperature (thermosensitive 

material). We also analyzed the effect exerted by the orthotropy degree and other factors on the behavior of the 
temperature field. 

Suppose a semi-infinite orthotropic thermosensitive plate is heated by a concentrated heat source with 

intensity w o that moves uniformly and parallel to the edge x o = 0 of the plate in the positive direction of the 0yo 
axis with a certain constant velocity v. Heat transfer between the plate surface x0 = 0 and the medium of constant 

temperature tm follows Newton's law; heat losses from the side surfaces are neglected [ 1 ]. 

We assume that the temperature distribution is quasistationary with respect to the moving coordinate 

system. In this case, the boundary-value problem for the temperature field resulting from a given thermal effect in 

the moving coordinate system x0y (x = xo, y = Y0 - ~)  takes the form 

O--~ x + ~y y (  T)-~y = - Cv( T) V-~y - WOCS ( x -  d, y) , (I) 

O T _ o  for tYl - " ~ 1 7 6  (2) T = T O , Oy 

dT 
tt x ( T ) ~  = a ( T -  /m) for x = 0,  (3) 
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where 6(~, r/) = ~(~)J(r/); wo = q /2~ ;  d is the distance of the heat source from the plate edge; To is the reference 
temperature. 

Assuming that the temperature dependence of the thermal conductivities Jl x and ~ly and heat capacity cv is 

the same in character, i.e., 2 y ( T ) / 2 x ( T )  = ky ~- const; 2 x ( T ) / c v ( T )  = a ~- const, it is possible to partially linearize 
the nonlinear boundary-value problem (1)-(3) by introducing the Kirchhoff variable 

After transformations, we obtain 

T 
1 f 2x (~) d$ ~ 

~176 + ky 050 ~ oo Qo~ (x - d, y) 
Ox 2 Oy 2 Oy 

(4) 

(5) 

00 
0 = 0 ,  - ~ y = 0  for l Y I - ~ ,  (6) 

00 
20 ~xx = a (T - tin) for x = 0 ,  (7)  

where w - v / 2 a ;  Qo = wo/2o; 20 is the reference value of the thermal conductivity coefficient 2x. 
Boundary condition (3) involves the value T(0, y), i.e., the solution of the nonlinear problem sought, taken 

on the boundary surface. Since T(0, y) is a function of the coordinate y alone, we approximate it by asymmetric 
unit functions [2 ] in the following way: 

m 

T(O,  y) = T o + ~,  T i [S_ ( y -  Yi) - S _  ( y -  Yi+l)], 
i=1 

(8) 

where Ti (i ffi 1, m)  are unknown values; Yi E I y  = {y. y E R }. 

With allowance for Eq. (8), boundary condition (7) can be written as follows: 

00 m 
RO-~x = a  ~,  T i [S_ ( y -  y i ) -  S_  ( y -  y i + l ) l .  (9) 

i=1 

In relation (9), without loss of generality, we assumed that tm = TO. 

The solution obtained for boundary-value problem (5), (6), and (9) on the basis of a integral Fourier 

transform with respect to the coordinate y has the form 

ra Y -  Yi+ 1 

2 T7 f exp (- Ko + + 
i= 1 Y-  Yi 

+ - -  Po e x p ( -  PY) {K 0 ( P ~ / k y ( X  + 0)  2 + y2 ) + 

+ K o (p ~' l,y < x -  o)2 + r2 ) } ,  00)  

where P = Pe /ky;  X = x / 6 ;  Y = Y/6;  Y| = yi /6;  D = d / 6 ;  T~ = Ti /TO; Po = Q o / T o  is the Pomerantsev number. 
Using relation (4), on the basis of Eq. (10) we find the desired temperature field. We note that it is 

expressed in terms of the unknown coefficients Ti. For their determination we should specify the law of the de- 
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Fig. 1. Lines of level d imens ion le s s  temperature T. of orthotropic  
thermosensitive system: a) Pe = 0.5; b) 1; c) 5. 

pendence of the thermal conductivity coefficients (in this case the thermal conductivity coefficient only in the 

direction of the 0x axis). The most widely used is the linear dependence, i.e., 

"~x (73 = ;to ( k r  - 1).  ( l l )  

Relation (11) is obtained by approximating the thermal conductivity coefficient of glass-reinforced plastic 

vs. the temperature (from 480 to 1200~ curve given in [3 ]; in this case, the reference temperature is equal to 

480~ Then the desired temperature is defined as a positive root of the quadratic equation 

2 2[  
~ (x ,  v) - -~o r .  (x ,  r) - -~o o (x ,  ~ + l - = o .  (12) 

Z ~ i :  

After some transformations invoking Eqs. (8) and (12), we obtain the following recurrence relations for 

] Ti = _ 1  + + 2 f2 (Yi) , 
Y 7 ky 

(13) 

where 

n (Y) = --~--W (Y) + Bi 
j=l 

T; [ ~ ( Y -  Y j + I ) - ~ ( Y -  1 " / ) ] + ; - 1 ;  
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Fig. 2. Lines of level dimensionless tempera ture  T.  constructed at D = 1, Pe 

-- 1: a) and b) isotropic and orthotropic thermosensi t ive systems; c and d) 

orthotropic and isotropic nonthermosensi t ive systems.  

qJ(Y) = e x p ( -  P Y  ) K 0 (P ~l kyD 2 +  y2 ) ; 

gP ( Y -  Yj) = ( Y -  Yj) exp ( -  Y)) [K 0 (Y~) - K 1 (Y))] S_ ( Y  - Yj) ; 

Yj = ( Y -  Y / ) P ;  7 = kTo;  T ,  = T / T  0 . 

Using Eqs. (10) and (13) we obtain a number  of particular cases. So, by setting ky = 1 in these relations, 

we find the solut ion of the cor responding  heat  conduct ion problem for an isotropic thermosens i t ive  system�9 

Assuming in boundary-va lue  problem (1)-(3) that 2x(T) = const and ~.y(T) = consI and  making the necessary 

t r a n s f o r m a t i o n s ,  we o b t a i n  an  e x p r e s s i o n  t h a t  d e t e r m i n e s  the  t e m p e r a t u r e  f i e ld  in an o r t h o t r o p i c  

nonthermosensi t ive  plate: 

T,(X, Y) -  Po 
- - e x p ( -  PY) • 

1 4 2  
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Fig. 3. Dependence of dimensionless temperature T,: a) on the coordinate X 

at Y =  0 (1) Pe = 0.5; 2) 1; 3) 5; b) on the coordinate Yat  X = D; Pe = 0.5; 

c) on the parameter  Pe at D- -  l; X = l; Y= 0. 

where 

• {Ko (,,,/k, <x- .)2 + : ) + .7 F fx, cos ,g[  + 1, 
o J 

(14) 

Bi) (Bi + ~.)-1 ~. ~ / P e P  + ~2 F ( X , ~ ) = e x p  [ -  ( X + D ) ~ . I  1 - ~  ; = . 

Se t t ing  ky = 1 in Eq. ( 1 4 ) ,  we o b t a i n  an e x p r e s s i o n  for the  t e m p e r a t u r e  f ie ld  in an i so trop ic  
nonthermosensit ive system. 

For implementation of a solution a set of programs was developed for the IBM PC X T / A T .  As initial data 
for calculations we took: ky = 1.6; k = 0 .494 .10  -2  ~ Po = 1; Bi = 0.01; D = 1. The plate was assumed to be 

made of a glass-reinforced plastic. When determining the values of T~/using Eqs. (13),  convergence was considered 

to be attained upon compliance with the criterion I T~i+! - T~z.I _ e, where e is an arbitrari ly small number;  the 

computer  time for a typical variant,  requiring not more than ten iteration steps, is of the order  of 10 sec. 

The  results of numerical investigations are given in Figs. 1-3. The distributions of constant temperature  

lines (isotherms) for different values of the Pe number  are shown in Figs. 1 and 2. The  graphs in Figs. 3a and 3b 

il lustrate the tempera ture  change over the coordinates X a n d  Y, while those given in Fig. 3c i l lustrate the 

temperature  dependence on the Peclet number. The  solid curves correspond to the temperature  in the orthotropic 

thermosensitive system; the dashed curves, the isotropic thermosensitive system; the dashed-dot ted curves, the 

orthotropic nonthermosensit ive system and the dashed curves with two points, the isotropic nonthermosensit ive 

body. 

From the numerical data presented we can see that in the case of a low velocity of the heat source, heat 

diffusion is considerable in all directions. As v, or, which is the same, Pe, increases, we observe localization of the 

temperature  field in the vicinity ( IXt  < D / 2 ,  I YI < D / 2 )  of the heat source. 

Allowance for or thot ropy leads to an insignificant decrease in tempera ture  compared to an isotropic 

medium, i.e., of the order  of 6 - 1 2 % .  The  relative effect of the orthotropy degree is virtually constant for both 

thermosensitive and nonthermosensit ive materials. To a greater  extent,  an influence on the temperature  distribution 

is exer ted by the thermosensitivity of the material; numerical calculations indicate that its consideration leads to 

a decrease in temperature  (by almost a factor of 2) for both isotropic and orthotropic bodies. 

Numerical calculations by formula (14) showed that the upper limit of integration can be limited to ~ -- 10 

without a substantial loss of accuracy. The improper integrals were calculated by the method of cubic splines using 

the s tandard  QUADPACK program [4 ]. On the basis of the numerical investigations performed we can assert that 

the integral with the infinite limit in Eq. (14) at any Bi has an order  of magnitude not greater  than 10 -5, i.e., in 
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investigating the thermal state of a nonthermosensitive orthotropic or isotropic plate, we can use an approximate 
formula, neglecting the improper integral entering into Eq. (14). 

The results obtained can form a basis for selecting regime parameters in investigations of processes of heat 
conduction in heatproof structural elements and justification for taking into account the variability of the thermal 
conductivity coefficients in solutions of heat and mass transfer problems. 

N O T A T I O N  

~x(T), ~ly(T), coefficients Of thermal conductivity along the principal axes of orthotropy coinciding with the 
axes of the Ox and Oy coordinates; a,  heat transfer coefficient; q, heat source power; cv(T), volumetric heat capacity; 

S_(~), asymmetric unit function; ~(~), Dirac delta-function; 2t~, thickness of plate; T(x, y), lemperature field; r, 

time; Bi = nO~it O, Biot number; Pe = vO/2a, Peclet number; Kv(~), modified Bessei function o~ orde~ "~ <v =- 0; I). 
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